Qwen fine tuning API
This documentation outlines the API endpoints for initiating and managing Qwen fine-tuning requests in Segmind.
Base URL
https://api.segmind.com
Authentication
All requests require an API key for authentication. Include the API key in the headers as follows:
--header 'x-api-key: YOUR_API_KEY'
1. Initiate Fine-Tune Request
Description
Initiate a new fine-tuning request.
Request
Headers
x-api-key
: Your API key.Content-Type
: Should beapplication/json
.
Dataset (data_source_path)
data_source_path
: A URL pointing to a ZIP file containing your training dataset.Purpose
: Specifies the dataset source for fine-tuning. Must be a valid public URL or a private Segmind URL.Options
: "Public ZIP URL (must support GET & HEAD requests)", "Segmind Private URL using Presigned"Descriptions
: -Public ZIP URL
: Must be directly accessible and respond properly to both HEAD and GET requests with headers like Content-Length. -Segmind Presigned URL
: Use Segmind Presigned URL endpoint to upload as private zip file
GPU Selection
machine_type: Specifies the GPU used for the fine-tuning job
Purpose: Defines the hardware performance tier for training in request submit endpoint
Options: "NVIDIA_H100"
Descriptions:
- NVIDIA_H100 (Fastest training)
Body
The request body must be in JSON format.
Request
curl --location 'https://api.segmind.com/finetune/request/submit' \
--header 'x-api-key: YOUR_API_KEY' \
--header 'Content-Type: application/json' \
--data '{
"name": "qwentest",
"data_source_path": "Segmind-hosted Private ZIP URL (uploaded via presigned link)" or "any public zip url",
"instance_prompt": "1MAN, running in brown suit",
"trigger_word": "1MAN",
"base_model": "QWEN",
"theme": "QWEN",
"machine_type": "NVIDIA_H100",
"train_type": "LORA",
"segmind_public": false,
"advance_parameters": {
"steps": 1000,
"auto_caption": false,
"learning_rate": 0.0004
}
}'
Sample Response
{
"status": "REQUESTED",
"request_id": "uuid",
"name": "fine-tune-job-name"
}
2. Get the Details of Individual Fine-Tune Request
Description
Retrieve a fine-tuning request along with details.
Request
curl --location --request GET 'https://api.segmind.com/finetune/request/details' \
--header 'x-api-key: YOUR_API_KEY' \
--header 'Content-Type: application/json' \
--data '{
"request_id": "REQUEST_ID"
}'
Sample Response
{
"finetune": {
"request_id": "uuid",
"finetune_id": "uuid",
"name": "fine-tune-job-name",
"data_source_path": "https://your-bucket.s3.amazonaws.com/path/to/dataset.zip",
"instance_prompt": "sample instance prompt",
"status": "AVAILABLE",
"source_type": "AWS_S3",
"base_model": "BASE_MODEL_NAME",
"slug": "model-slug",
"public_model": false,
"error_message": null,
"cloud_storage_url": "https://your-bucket.s3.amazonaws.com/path/to/model.safetensors",
"created_ts": "2025-01-01T00:00:00Z",
"updated_ts": "2025-01-01T00:00:00Z"
}
}
3. Get the List of Fine-Tune Requests
Description
Retrieve a list of fine-tuning requests along with their details.
Request
curl --location 'https://api.segmind.com/finetune/request/list' \
--header 'x-api-key: YOUR_API_KEY'
Sample Response
[
{
"request_id": "uuid",
"data_source_path": "https://your-bucket.s3.amazonaws.com/path/to/dataset.zip",
"name": "fine-tune-job-name",
"status": "AVAILABLE",
"error_message": null,
"segmind_model_path": null,
"advance_parameters": {
"steps": 10,
"learning_rate": 0.0001,
"prompt": "sample prompt",
"theme": "sample-theme"
},
"segmind_public_model": false,
"train_type": "LORA",
"source_type": "AWS_S3",
"base_model": "BASE_MODEL_NAME",
"theme": "sample-theme",
"cloud_storage_url": null,
"finetune_id": "uuid",
"model_information": {}
}
]
4. Get Fine-Tune Data Upload Pre-Signed URL
Description
Obtain a pre-signed URL to securely upload fine-tuning data to cloud storage. This URL allows you to upload data directly from your local system or application without needing AWS credentials.
Usage
Call this endpoint to generate a temporary pre-signed URL. Use the returned URL to upload your dataset file to the specified location via a PUT request..
Request
curl --location --request GET 'https://api.segmind.com/finetune/request/upload/pre-signed-url' \
--header 'x-api-key: YOUR_API_KEY' \
--header 'Content-Type: application/json' \
--data '{
"name": "NAME_OF_THE_FILE"
}'
Sample Response
{
"presigned_url": "https://finetune-pipeline.s3.amazonaws.com/uploads/{user_id}/{file_id}-{filename}.zip?X-Amz-Algorithm=...&X-Amz-Signature=...",
"s3_url": "https://finetune-pipeline.s3.amazonaws.com/uploads/{user_id}/{file_id}-{filename}.zip"
}
5. Update Fine-Tuned Model Access
Description
Update the access settings of a fine-tuned model (public/private).
Request
curl --location --request PUT 'https://api.segmind.com/finetune/request/access-update' \
--header 'x-api-key: YOUR_API_KEY' \
--form 'request_id="REQUEST_ID"' \
--form 'segmind_public="True"'
Sample Response
200
6. Download the Fine-Tuned Safetensor File
Description
Generate a time-limited pre-signed URL to securely download the fine-tuned model file (.safetensors) from cloud storage. The URL is valid for 1 hour and allows direct download without requiring AWS credentials.
Request
curl --location --request GET 'https://api.segmind.com/finetune/request/file/download' \
--header 'x-api-key: YOUR_API_KEY' \
--form 'cloud_storage_url="CLOUD_STORAGE_URL"'
Sample Response
https://segmind-sd-models.s3.amazonaws.com/finetune/finetuned_models/job_id/filename.safetensors?AWSAccessKeyId=***&Signature=***&Expires=***
Webhooks
Webhooks provide a way to get real-time updates about finetuning jobs programmatically. You can register a webhook for finetuning jobs in the Developer tab on console.
Once a webhook is created, test it, by having it send a sample payload to verify delivery. Once its up, create a finetuning job to receive status updates. Events are sent to webhooks on 3 status changes:\
TRAINING_COMPLETED
: The training is completed on model, and finetuned model is available for download on thetrained_model_url
.INFERENCE_QUEUED
: Model is being deployed on Segmind inference engine.AVAILABLE
: Model is deployed, and ready for inferences oninference_api_url
Note: You can create only 1 webhook at a time for finetune jobs. If you want to change the webhook, please delete the old webhook before creating a new one.
Last updated