website logo
⌘K
Introduction
Models
APIs
sd1.5-controlnet
sd1.5
sd2.1
MCSA
Docs powered by archbee 

sd1.5

1min

Models supported

sd1.5-inpainting, sd1.5-img2img

POST https://{base-url}/sd1.5-{model}

Request body

# Prompt to render, eg. "Stormtrooper giving a lecture" prompt: str # Prompts to exclude, eg. "bad anatomy, bad hands, missing fingers" # Default: None negative_prompt: str  # Number of output images # Default: 1 samples: int # Type of scheduler. # Options: ["DDIM", "DPM Multi", "DPM Single", "Euler a", "Euler", "Heun", "DPM2 a Karras", "DPM2 Karras", "LMS", "PNDM", "DDPM"] # Default: DDIM scheduler: enum # Number of denoising steps. # Default: 20; Max: 50 num_inference_steps: int # Scale for classifier-free guidance # Default: 7.5 guidance_scale: float # Seed for image generation. # Default: Random seed: int # How much to transform the reference image # Default: 1; Range: 0 to 1 strength: float # Input reference image URL, alternatively, use an image in base64 as shown below. imageUrl: str # Base64 encoding of the input reference image. image: str # Base64 encoding of the output image. # Optional # Default: false base64: boolean # Input mask image URL, alternatively, use an image in base64 as shown below. Only required for sd1.5-inpainting maskUrl: str # Base64 encoding of the mask image. Only required for sd1.5-inpainting. mask: str



Updated 03 Jun 2023
Did this page help you?
Yes
No
PREVIOUS
sd1.5-controlnet
NEXT
sd2.1
Docs powered by archbee 
TABLE OF CONTENTS
Models supported