Segmind vs Google Colab

Google Colab allows simple access to compute for running your Jupyter notebooks. It comes with a modified jupyter interface and internally uses GCP to schedule workers.

Select Hardware

Choose anything between a single CPU machine to a powerful multi-GPU machine. Changing your machine takes just 2 minutes.

Managed Docker Environments

Stopping the session saves the environment (in the docker container). So you can get back to where you were, once you restart your notebook. You are going to save tons of time not reinstalling packages.

True Jupyter Experience (and VS Code)

Work on pure Jupyter user interface, no modifications. Advance JupyterLab interface includes features found in traditional IDEs such as text editors, terminal along with the traditional Jupyter notebook. You can also choose VS Code IDE to work on your code.

Other advantages

No Timeouts

Complete control over the lifecycle of a VM running your notebook. No timeouts, run your code as long as it takes.

Experiment Tracking

Training metrics such as loss, accuracy etc for each run is automatically tracked on SegMind dashboard. No setup required.

Base Dockers

Start with any of the leading machine learning and deep learning frameworks including PyTorch, Tensorflow and more, configured for each kind of hardware environment.

Updated 13 Feb 2022
Did this page help?